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Abstract

The vibrational characteristics of thick circular plates built into a rigid medium in the vicinity of the circumference
are studied. The analysis procedure is based on the exact, small-strain, three-dimensional linear elasticity theory. In the
analysis, the plate is considered as comprising an inner circular disc with free upper and lower surfaces connected to an
outer annulus that is built into the rigid medium. The Chebyshev polynomials multiplied by suitable boundary char-
acteristic functions are selected as the admissible functions of the displacement functions, and the three-dimensional
displacement fields in each part can be expressed accordingly. Through the Ritz method, the eigenvalue equations
can be established for the inner disc and the outer annulus, respectively. Utilizing the displacement continuity condi-
tions at the interface between the two parts, the eigenvalue equation for the whole plate is derived. Convergence
and comparison studies demonstrate the correctness and accuracy of the present method. The effect of structural
parameters such as plate thickness, built-in length and the end condition on eigenfrequencies of circular plate is inves-
tigated in detail. It is shown that with the increase of plate thickness, the effect of the built-in annulus on eigenfrequen-
cies significantly increases. Therefore, for a thick plate, the flexibility of the built-in part should be considered in the
dynamic analysis.
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1. Introduction

In view of the wide applications of circular plates in many practical fields such as civil, defence, marine
and mechanical engineering, numerous investigations in this area have been carried out over the years. A
summary of the early research achievements on vibration of circular plates was given by Leissa (1969). So
and Leissa (1998) pointed out that up to now, at least 90% of the published results are based upon two-
dimensional (2-D) plate theories. It is well known that the classical plate theory (CPT) can provide accurate
results for sufficiently thin plates, but it always overestimates eigenfrequencies due to the Kirchhoff hypoth-
esis. To improve the accuracy of the CPT and extend it to moderately thick plates, Deresiewicz and Mindlin
(1955) presented the first-order shear deformation theory (FSDT) by including shear and rotary inertia.
Liew et al. (1997) used the differential quadrature method to study the free vibration of circular Mindlin
plates. Moreover, various higher-order shear deformation theories (HSDT) have also been developed (Red-
dy, 1984; Hanna and Leissa, 1994) for thick plates.

2-D plate theories reduce the dimension of problem from three to two by imposing certain assumptions on
the deformations in the plate-thickness direction. This results in a relatively simple expression and derivation
of solutions. These artificial constraints inherently bring errors, which rapidly increase with the plate thick-
ness. Moreover, these simplified theories cannot predict a full free vibration spectrum for very thick plates.
As a result, three-dimensional (3-D) elasticity theories play an important role not only in providing realistic
results but also in bringing out physical insights, which cannot be obtained from 2-D theories.

In the recent two decades, some attempts on 3-D vibration analysis of circular plates have been reported.
Hutchinson provided a Mathieu series solution for thick, circular plates with free edges (Hutchinson, 1979)
and evaluated the validity of the FSDT (Hutchinson, 1984). So and Leissa (1998) used simple algebraic
polynomials as admissible functions to calculate the eigenfrequencies of thick, completely free circular
and annular plates using the Ritz method, while Liew and Yang (1999, 2000) used orthogonally generated
polynomials as admissible functions to analyze such plates with various boundary conditions. Fan and Ye
(1990) used the state-space method to investigate the free vibration of laminated circular plates, and Liu
and Lee (2000) used the finite element method to analyze the vibration modes of circular plates. In two re-
cent papers (Zhou et al., 2003a,b), the writers adopted Chebyshev polynomial series (Fox and Parker, 1968)
as the admissible functions to study the 3-D vibration of circular and annular plates, and solid and hollow
circular cylinders, respectively. The advantage of Chebyshev polynomials in numerical stability, in partic-
ular in the calculation of the higher-order modes has been shown.

In the existing 2-D and 3-D analyses of plates, classical boundary conditions are commonly used to rep-
resent the boundary constraints of the plate, such as clamped, free, simply-supported, sliding edges, etc.
Note that for 3-D analysis, the simply-supported condition can be further divided into the hard and the
soft cases. However, it should be pointed out that except for the completely free edge, other types of edge
conditions such as the clamped or simply-supported ones cannot be exactly replicated in reality, as they are
only approximate descriptions of the actual edge conditions (So and Leissa, 1998). Although such approx-
imations are sufficiently accurate for thin plates, they may not be suitable for thick plates. Normally, if a
plate is built into a rigid medium, then it is considered as a plate with clamped edges along the termination
of the free upper and lower surfaces. Such a boundary description accords with the mechanical behavior of
thin plates fairly well. However it would result in significant errors for thick plate analysis, because of the
flexibility of the built-in part of the plate, which increases with increasing plate thickness. In actual practice,
as a rule, the flexibility of the built-in part can be approximately considered as equivalent massless trans-
lational and/or torsional springs distributed along the edge of the inner disc or an equivalent size added to
the radius of the inner disc. However, it is very difficult to correctly determine the equivalent stiffness or the
equivalent size of the built-in part. In the present analysis, the effect of the size of built-in support and the
plate thickness on vibrational characteristics of circular plates is studied in detail based on the 3-D linear
elasticity theory. The Ritz method is used to derive the eigenvalue equation of the plate. The effect of the
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flexibility of the built-in annulus on eigenfrequencies is investigated in detail. Some results known for the
first time and some important conclusions are given.
2. Theoretical formulation

Consider a homogeneous and isotropic, annular plate with outer radius R2 inner radius R0 and thickness
h, as shown in Fig. 1. It is clear that R0 = 0 yields a solid circular plate. The outer annulus of the plate is
built into a rigid medium while the inner annulus of the plate has free upper and lower surfaces. In addition,
the outer edge of the plate may either be free or set in the rigid medium, as shown in Fig. 1(b). The latter
case is hereafter called the fully built-in condition. The radius of the interface between the outer and inner
annuluses (the interface radius) is R1. Therefore, the radial built-in length of the plate is R2 � R1. A cylin-
drical coordinate system with r in the radial direction, h in the circumferential direction and z in the thick-
ness direction is developed to describe the motion of the plate. The corresponding displacement
components at a generic point are u, v and w in the r, h and z directions, respectively. Dividing the plate
into two concentric annular plates (denoted by i = 1,2, respectively) will result in one with free upper
and lower surfaces (i = 1) and another built into the rigid medium (i = 2). The displacements at surfaces
in contact with the rigid medium are fully restrained but no initial clamping force on the built-in section
in the thickness direction is assumed.

For each sub-plate, the linear elastic strain energy Vi is given by
V i ¼ G
2

Z Ri

Ri�1

Z 2p

0

Z h=2

�h=2

2m
1� 2m

eirr þ eihh þ eizz
� �2�

þ2 eirr
� �2 þ eihh

� �2 þ eizz
� �2h i

þ eirh
� �2 þ eirz

� �2 þ eihz
� �2�

rdzdhdr; ð1Þ
Fig. 1. An annular plate built into a rigid medium.
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where G is the shear modulus, m is the Poisson�s ratio. eist (s, t = r,h,z) are the strain components of the ith
sub-plate as follows
eirr ¼
oui
or

; eihh ¼
ui
r
þ ovi
roh

; eizz ¼
owi

oz
;

eirh ¼
oui
roh

þ ovi
or

� vi
r
; eirz ¼

oui
oz

þ owi

or
; eihz ¼

ovi
oz

þ owi

roh

ð2Þ
in which, ui, vi and wi are the corresponding displacement components of the ith sub-plate in the r, h and z

directions, respectively.
The kinetic energy Ti of the ith sub-plate is given by
T i ¼ q
2

Z Ri

Ri�1

Z 2p

0

Z h=2

�h=2

oui
ot

� �2

þ ovi
ot

� �2

þ owi

ot

� �2
" #

rdzdhdr; ð3Þ
where q is the mass density per unit volume.
For simplicity in mathematical expression, the following dimensionless parameters are introduced
�ri ¼
2r

Ri
� di; �h ¼ h; �z ¼ 2z

h
; ð4Þ
where Ri ¼ Ri � Ri�1 and di = (Ri + Ri�1)/(Ri�Ri�1).
For free vibration, the displacement components of the plate can be written in terms of the displacement

amplitude functions as follows
uiðr; h; z; tÞ ¼ Uið�ri; �h;�zÞejxt; viðr; h; z; tÞ ¼ V ið�ri; �h;�zÞejxt;
wiðr; h; z; tÞ ¼ W ið�ri; �h;�zÞejxt;

ð5Þ
where x denotes the eigenfrequency of the plate and j ¼
ffiffiffiffiffiffiffi
�1

p
.

Considering the circumferential symmetry of the circular plate about the coordinate �h, the displacement
amplitude functions can be further expressed by
Uið�ri; �h;�zÞ ¼ Uið�ri;�zÞ cosðn�hÞ; V ið�ri; �h;�zÞ ¼ V ið�ri;�zÞ sinðn�hÞ;
W ið�ri; �h;�zÞ ¼ W ið�ri;�zÞ cosðn�hÞ;

ð6Þ
where n is the circumferential wave number, which should be taken to be an integer, namely
n = 0,1,2, . . . ,1, to ensure the periodicity of a circular plate. It is obvious that n = 0 means the axisymmet-
ric mode. In such a case, Uið�ri; �h;�zÞ ¼ Uið�ri;�zÞ; V ið�ri; �h;�zÞ ¼ 0; W ið�ri; �h;�zÞ ¼ W ið�ri;�zÞ. Rotating the symme-
try axes by p/2, another set of free vibration modes can be obtained, corresponding to an interchange of
cosðnhÞ and sinðnhÞ in Eq. (6). However, in such a case, n = 0 means Uið�ri; �h;�zÞ ¼ 0; V ið�ri; �h;�zÞ ¼ V ð�ri;�zÞ
and W ið�ri; �h;�zÞ ¼ 0, which is referred to as the torsional mode.

In free vibration problems, the displacements of the plate are periodic functions of time and so are the
corresponding potential energy and kinetic energy. Therefore, substituting Eqs. (4)–(6) into Eqs. (1)–(3)
yields the maximum potential energy V i

max and kinetic energy T i
max of the ith sub-plate during a vibration

cycle as follows
V i
max ¼

Gh
2

Z 1

�1

Z 1

�1

2m
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C1ð�ei�r�r þ �ei�h�h þ �e�z�ziÞ
�
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�
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T i
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qR
2

i h
16
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� 	
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�ei�r�r ¼
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; �ei�h�h ¼
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þ n
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�ri þ di
; �ei�z�z ¼

oW i

cio�z
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�ri þ di
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ð8Þ
in which,
C1 ¼
Z 2p

0

cos2ðnhÞdh ¼
2p if n ¼ 0;

p if n > 0;

�

C2 ¼
Z 2p

0

sin2ðnhÞdh ¼
0 if n ¼ 0;

p if n > 0;

�
ci ¼ h=Ri.

ð9Þ
Each of the displacement amplitude functions Uið�ri;�zÞ, V ið�ri;�zÞ and W ið�ri;�zÞ is assumed, respectively, in the
form of double series of Chebyshev polynomials multiplied by boundary characteristic functions as follows
Uið�ri;�zÞ ¼ Ui
uð�riÞWi

uð�zÞ
XJ i
j¼1

XKi

k¼1

Ai
jkF jð�riÞF kð�zÞ;

V ið�ri;�zÞ ¼ Ui
vð�riÞWi

vð�zÞ
XLi
l¼1

XMi

m¼1

Bi
lmF lð�riÞF mð�zÞ;

W ið�ri;�zÞ ¼ Ui
wð�riÞWi

wð�zÞ
XP i

p¼1

XQi

q¼1

Ci
mnF pð�riÞF qð�zÞ;

ð10Þ
where Ji, Ki, Li, Mi, Pi and Qi are the truncated orders of the Chebyshev series and Ai
jk, B

i
lm and Ci

pq are the
unknown coefficients. Fs(v) (s = 1,2,3, . . .; v ¼ �ri;�zi) is the one-dimensional sth Chebyshev polynomial
which can be expressed in a form of cosine functions as follows
F sðvÞ ¼ cos½ðs� 1Þ arccosðvÞ�; ðs ¼ 1; 2; 3; . . .Þ ð11Þ

while Ui

uð�riÞ, Ui
vð�riÞ, Ui

wð�riÞ, Wi
uð�zÞ, Wi

vð�zÞ and Wi
wð�zÞ are boundary characteristic functions of the ith sub-

plate, which enable the displacement components ui, vi and wi to satisfy the geometric boundary conditions
of the sub-plate. It is obvious that W1

uð�zÞ ¼ W1
vð�zÞ ¼ W1

wð�zÞ ¼ 1 because the upper and lower surfaces of the
inner disc are free. For a solid circular plate, U1

uð�r1Þ ¼ U1
vð�r1Þ ¼ U1

wð�r1Þ ¼ 1. For a plate with fully built-in
condition at the edge,
U2
uð�r2Þ ¼ U2

vð�r2Þ ¼ U2
wð�r2Þ ¼ 1� �r2; W2

uð�zÞ ¼ W2
vð�zÞ ¼ W2

wð�zÞ ¼ 1� �z2 ð12Þ

while for a plate with a built-in outer annulus but a free edge at r = R2,
U2
uð�r2Þ ¼ U2

vð�r2Þ ¼ U2
wð�r2Þ ¼ 1; W2

uð�zÞ ¼ W2
vð�zÞ ¼ W2

wð�zÞ ¼ 1� �z2. ð13Þ

It is noted that Chebyshev polynomial series Fs(v) (s = 1,2,3, . . .) is a set of complete and orthogonal one in
the interval [�1,1]. This ensures the double series Fj(v)Fk(v) (j,k = 1,2,3, . . .) to be also a complete and
orthogonal set in each sub-plate region. The excellent properties of the Chebyshev polynomial series in
the approximation of functions have been well known (Fox and Parker, 1968). Therefore, using this set
of Chebyshev polynomial series as the admissible functions, rapid convergence and excellent stability in
numerical operation can be expected. However, in the Ritz method, the admissible functions should satisfy
the specified geometric boundary conditions. Therefore, except for the completely free circular plates, the
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boundary characteristic functions should be introduced to ensure the satisfaction of geometric boundary
conditions, as given in Eq. (10). The boundary characteristic functions should be continuous and differen-
tiable. Their sign should not change in the structural domain and they should also satisfy the geometric
boundary conditions. Therefore the shapes of displacement amplitude functions are controlled by the
Chebyshev polynomials, which are the main components of displacement amplitude functions.

For a structure with symmetric boundary conditions, the boundary characteristic functions should also
be symmetric. The vibration modes can be classified into symmetric and antisymmetric ones by taking the
even and odd terms of Chebyshev polynomial series, respectively. This will greatly reduce the computa-
tional effort.

Defining the energy functional of the ith sub-plate as
Pi ¼ V i
max � T i

max ð14Þ

and minimizing the above functional with respect to the coefficients as follows
oPi

oAi
jk

¼ 0;
oPi

oBi
lm

¼ 0;
oPi

oCi
pq

¼ 0 ð15Þ
one obtains the eigenvalue equations in matrix form of
ð½Ki� � X2½Mi�ÞfX ig ¼ 0; i ¼ 1; 2; ð16Þ
where
X ¼ xR1

ffiffiffiffiffiffiffiffiffi
q=G

p
; ½Ki� ¼

½Kuui� ½Kuvi� ½Kuwi�
Kvvi ½Kvwi�

Sym ½Kwwi�

0
B@

1
CA;

½Mi� ¼ Ri

R1

� �2
½Muui� ½0� ½0�

½Mvvi� ½0�
Sym ½Mwwi�

0
B@

1
CA;

fX ig ¼ f fAig fBig fCig gT; for n P 1;

ð17Þ

½Ki� ¼
½Kuui� ½Kuwi�
Sym ½Kwwi�

 !
; ½Mi� ¼ Ri

R1

� �2 ½Muui� ½0�
Sym ½Mwwi�

 !
;

fX ig ¼ f fAig fCig gT; n ¼ 0 for the axisymmetric vibration
ð18Þ

½Ki� ¼ ½Kvvi�; ½Mi� ¼ ðRi=R1Þ2½Mvvi�;

fX ig ¼ fBigT; n ¼ 0 for the torsional vibration: ð19Þ
In the above equations, [Ksti] and [Msti] (s, t = u,v,w) are the stiffness sub-matrices and the diagonal mass
sub-matrices of the ith sub-plate, respectively. {Ai}, {Bi} and {Ci} are column vectors composed of the un-
known coefficients as follows
fAig ¼ Ai
11 � � � Ai

1Ki
Ai
21 � � � Ai

2Ki
� � � Ai

Ji1
� � � Ai

JiKi


 �T
;

fBig ¼ Bi
11 � � � Bi

1Mi
Bi
21 � � � Bi

2Mi
� � � Bi

Li1
� � � Bi

LiMi


 �T
;

fCig ¼ Ci
11 � � � Ci

1Qi
Ci

21 � � � Ci
2Qi

� � � Ci
Pi1

� � � Ci
P iQi

n oT

.

ð20Þ
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The elements of the sub-matrices [Ksti] and [Msti] (s, t = u,v,w) are given by
½Kuui� ¼ 1� m
1� 2m

Di111
uju�j þ Di00�1

uju�j

� 	
H 00

uku�k þ
m

1� 2m
Di010

uju�j þ Di100
uju�j

� 	
H 00

uku�k

þ 1

2c2i
n2c2i D

i00�1
uju�j H 00

uku�k þ Di001
uju�jH

11
uku�k

� 	
;

½Kuvi� ¼ ð1� mÞn
1� 2m

Di00�1
ujv�l H 00

ukv�m

mn
1� 2m

Di100
ujv�lH

00
ukv�m þ n

2
Di00�1

ujv�l � Di010
ujv�l

� 	
H 00

ukv�m;

½Kuwi� ¼ m
ð1� 2mÞci

Di101
ujw�p þ Di000

ujw�p

� 	
H 01

ukw�q þ
1

2ci
Di011

ujw�pH
10
ukw�q;

½Kvvi� ¼ ð1� mÞn2
1� 2m

Di00�1
vlv�l H 00

vmv�m þ 1

2
Di111

vlv�l þ Di00�1
vlv�l � Di010

vlv�l � Di100
vlv�l

� �
H 00

vmv�m þ 1

2c2i
Di001

vlv�l H
11
vmv�m;

½Kvwi� ¼ mn
ð1� 2mÞci

Di000
vlw�pH

01
vmw�q þ

n
2ci

Di000
vlw�pH

10
vmw�q;

½Kwwi� ¼ 1� m
ð1� 2mÞc2i

Di001
wpw�pH

11
wqw�q þ

1

2
Di111

wpw�p þ n2Di00�1
wpw�p

� 	
H 00

wqw�q;

½Muui� ¼ Di001
j�j H 00

uku�k=8; ½Mvvi� ¼ Di001
vlv�l H

00
vmv�m=8;

½Mwwi� ¼ Di001
wpw�pH

00
wqw�q=8

ð21Þ
in which
Diabc
arbs ¼

Z 1

�1

da½Ui
að�riÞF rð�riÞ�
d�rai

db½Ui
bð�riÞF sð�riÞ�
d�rbi

ð�ri þ diÞc d�ri;

Hab
arbs ¼

Z 1

�1

da½Wi
að�zÞF rð�zÞ�
d�za

db½Wi
bð�zÞF sð�zÞ�
d�zb

d�z; a; b ¼ 0; 1; c ¼ 0; 1;�1;

a; b ¼ u; v;w; r ¼ j; l; p; k;m; q; s ¼ �j;�l; �p; �k; �m; �q.

ð22Þ
Eq. (16) can be further expressed simply to
ð½K� � X2½M �ÞfXg ¼ f0g; ð23Þ
where
½K� ¼ ½K1� ½0�
½0� ½K2�

" #
; ½M � ¼ ½M1� ½0�

½0� ½M2�

" #
; fXg ¼ fX 1g

fX 2g

( )
. ð24Þ
It should be mentioned that the two sets (i = 1,2) in Eq. (16) are independent of each other, and therefore
the eigenfrequencies of the plate could not be obtained directly from Eq. (23). This is because the column
vector {X} is not composed of independent variables which should also satisfy the displacement continuity
conditions on the adjacent boundary of two sub-plates as follows
U 1ð�r1;�zÞ ¼ U 2ð�r2;�zÞ; V 1ð�r1;�zÞ ¼ V 2ð�r2;�zÞ;

W 1ð�r1;�zÞ ¼ W 2ð�r2;�zÞ; at �r1 ¼ 1 and �r2 ¼ �1.
ð25Þ
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Substituting Eq. (10) into the above equation, one has
XJ i
j¼1

XKi

k¼1

Ai
jkF jð1ÞF kð�zÞ ¼ U2

uð�1ÞW2
uð�zÞ

XJ iþ1

j¼1

XKiþ1

k¼1

Aiþ1
jk F jð�1ÞF kð�zÞ;

XLi
l¼1

XMi

m¼1

Bi
lmF lð1ÞF mð�zÞ ¼ U2

vð�1ÞW2
vð�zÞ

XLiþ1

l¼1

XMiþ1

m¼1

Biþ1
lm F lð�1ÞF mð�zÞ;

XP i

p¼1

XQi

q¼1

Ci
pqF pð1ÞF qð�zÞ ¼ U2

wð�1ÞW2
wð�zÞ

XP iþ1

p¼1

XQiþ1

q¼1

Ciþ1
pq F pð�1ÞF qð�zÞ.

ð26Þ
One may consider the following mathematical properties of Chebyshev polynomial series
F sð1Þ ¼ 1; F sð�1Þ ¼ ð�1Þs�1;

Z 1

�1

F sð�zÞF tð�zÞ=
ffiffiffiffiffiffiffiffiffiffiffiffi
1� �z2

p
d�z ¼

0 s 6¼ t;

1 s ¼ t

( ð27Þ
and then expand the two sides of Eq. (26) into a Chebyshev polynomial series in terms of the variable �z. For
a solid circular plate one has
XJ1
j¼1

A1
jk ¼ U2

uð�1Þ
XJ2
j¼1

XK2

�k¼1

A2
j�kð�1Þj�1Gk�k; k ¼ 1; 2; . . . ;K1;

XL1
l¼1

B1
lm ¼ U2

vð�1Þ
XL2
l¼1

XM2

�m¼1

B2
l�mð�1Þl�1Gm�m; m ¼ 1; 2; . . . ;M1;

XP1

p¼1

C1
pq ¼ U2

wð�1Þ
XP 2

p¼1

XQ2

�q¼1

C2
p�qð�1Þp�1Gq�q; q ¼ 1; 2; . . . ;Q1;

ð28Þ
where
Gst ¼
Z 1

�1

ffiffiffiffiffiffiffiffiffiffiffiffi
1� �z2

p
F sð�zÞF tð�zÞd�z; s ¼ k;m; q; t ¼ �k; �m; �q. ð29Þ
From Eq. (28), one knows that the number of independent unknowns is N ¼
P2

i¼1ðJ i � Ki þ Li �Miþ
P i � QiÞ � ðK1 þM1 þ Q1Þ. Selecting N variables in {X} to make up a new column vector fXg, then one has
fXg ¼ ½S�fXg; ð30Þ

where the coefficient matrix [S] is determined by Eq. (28). Using the above equation, Eq. (23) can be written
as
ð½K� � X2½M �ÞfXg ¼ f0g ð31Þ

where
½K� ¼ ½S�T½K�½S�; ½M � ¼ ½S�T½M �½S�. ð32Þ

A non-trivial solution is obtained by setting the determinant of the coefficient matrix of Eq. (31) equal to
zero. The roots of the determinant are the square of the eigenvalue (dimensionless eigenfrequency) X. The
eigenfunctions (mode shapes) corresponding to the eigenvalues are determined by back-substitution of the
eigenvalues, one by one, in the usual manner.
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3. Convergence and comparison studies

It is well known that the Ritz method provides eigenvalues converging as upper bounds to the exact val-
ues. Although solutions with any accuracy can be obtained theoretically by using a sufficiently large num-
ber of terms of admissible functions, a limit to the number of terms of admissible functions exists in the
actual computation because of the limited speed, capacity and numerical accuracy of computers. Especially
for the 3-D vibration analysis of structures, an ill-conditioned eigenvalue problem sometimes occurs due to
the large matrix size involved. Therefore, it is important to study the convergence rate and the accuracy of
the method. Firstly, a fully built-in, solid circular plate with the size parameters h/R1 = 0.5 and R2/R1 = 1.5
is taken to show the convergence of the present method. In all the following computations, the Poisson�s
ratio m = 0.3 is used. For simplicity, equal numbers of terms of Chebyshev polynomials were taken for each
of the displacement amplitude functions U , V and W in each coordinate direction (namely J1 = L1 = P1 =
J2 = L2 = P2 = J and K1 =M1 = Q1 = K2 = M2 = Q2 = K), although using unequal numbers of series
terms may be more efficient. Tables 1 and 2 give the convergence of the first eight eigenfrequency param-
eters for antisymmetric and symmetric modes, respectively, where only the torsional vibration, axisymmet-
ric vibration and vibrations of circumferential wave numbers n = 1 and n = 10 were considered. Four
groups of different numbers of terms were used to examine the convergence: J · K = 10 · 5, 15 · 10,
20 · 10 and 25 · 20. From the tables, one can see that with the increase of the numbers of terms, the eigen-
frequency parameters monotonically decrease and the convergence patterns are similar for all of the mode
categories. It is shown that the maximum relative error estimated from results by J · K = 20 · 10 and
25 · 20 is only about 0.065%, which occurs with the first antisymmetric mode of axisymmetric vibration.
Such accuracy is more than sufficient for engineering applications. Moreover, with decreasing plate thick-
ness, more terms in the radial direction but fewer terms in the thickness direction are needed.

The first eight eigenfrequency parameters of antisymmetric modes for the axisymmetric vibration and
vibrations of circumferential wave numbers n = 1,2,3 are given in Table 3 and compared to those from
classical plate theory (Leissa, 1969). The plate thickness ratio is h/R1 = 0.001 and the built-in radius ratio
Table 1
Convergence of the first eight eigenfrequencies X ¼ xR1

ffiffiffiffiffiffiffiffiffi
q=G

p
for the antisymmetric modes of a fully built-in solid circular plate,

R2/R1 = 1.5; h/R1 = 0.5

n J · K X1 X2 X3 X4 X5 X6 X7 X8

0t 10 · 5 7.253 9.118 11.37 13.36 14.34 16.16 17.74 19.19
15 · 10 7.250 9.112 11.36 13.35 14.34 16.13 17.63 19.19
20 · 10 7.250 9.109 11.36 13.35 14.34 16.13 17.63 19.19
25 · 20 7.249 9.108 11.36 13.35 14.34 16.13 17.63 19.19

0a 10 · 5 1.562 4.078 6.678 8.587 9.660 11.32 12.43 12.86
15 · 10 1.557 4.068 6.666 8.577 9.643 11.31 12.41 12.86
20 · 10 1.555 4.064 6.660 8.574 9.637 11.30 12.41 12.86
25 · 20 1.554 4.063 6.658 8.572 9.634 11.30 12.41 12.86

1 10 · 5 2.651 5.297 7.008 8.011 8.150 9.947 10.19 11.10
15 · 10 2.644 5.286 7.003 8.002 8.141 9.934 10.18 11.08
20 · 10 2.641 5.281 7.002 7.998 8.137 9.930 10.18 11.07
25 · 20 2.640 5.280 7.002 7.996 8.136 9.929 10.18 11.07

10 10 · 5 11.87 13.32 14.92 15.31 16.42 16.89 18.08 18.45
15 · 10 11.86 13.32 14.90 15.30 16.42 16.86 18.07 18.44
20 · 10 11.85 13.32 14.90 15.30 16.41 16.86 18.07 18.43
25 · 20 11.85 13.32 14.90 15.30 16.41 16.86 18.07 18.43

Note: 0t means torsional vibration, 0a means axisymmetric vibration.



Table 2
Convergence of the first eight eigenfrequencies X ¼ xR1

ffiffiffiffiffiffiffiffiffi
q=G

p
for the symmetric modes of a fully built-in solid circular plate,

R2/R1 = 1.5; h/R1 = 0.5

n J · K X1 X2 X3 X4 X5 X6 X7 X8

0t 10 · 5 3.437 6.122 8.021 9.638 11.66 13.09 13.53 14.27
15 · 10 3.433 6.115 8.020 9.635 11.66 13.08 13.53 14.27
20 · 10 3.431 6.112 8.020 9.633 11.66 13.08 13.52 14.26
25 · 20 3.430 6.111 8.020 9.633 11.66 13.08 13.52 14.26

0a 10 · 5 5.351 8.197 9.979 11.15 11.49 12.56 13.28 14.04
15 · 10 5.343 8.194 9.973 11.15 11.48 12.54 13.27 14.02
20 · 10 5.341 8.193 9.971 11.15 11.48 12.54 13.27 14.01
25 · 20 5.340 8.192 9.670 11.15 11.48 12.54 13.27 14.01

1 10 · 5 2.878 4.781 6.871 7.286 8.729 9.126 10.64 10.75
15 · 10 2.872 4.774 6.865 7.281 8.728 9.123 10.63 10.74
20 · 10 2.871 4.772 6.863 7.279 8.728 9.121 10.63 10.74
25 · 20 2.870 4.771 6.862 7.278 8.728 9.120 10.63 10.74

10 10 · 5 11.76 13.48 13.97 15.22 16.54 16.77 18.29 18.78
15 · 10 11.76 13.47 13.95 15.22 16.53 16.75 18.26 18.75
20 · 10 11.76 13.47 13.94 15.22 16.52 16.74 18.26 18.75
25 · 20 11.76 13.47 13.94 15.22 16.52 16.74 18.26 18.75

Table 3
Comparison of the first eight eigenfrequency parameters k of antisymmetric modes for a thin built-in solid circular plate (h/R1 = 0.001,
R2/R1 = 1.25) with the results from classical plate theory (in parentheses) by Leissa (1969)

n k1 k2 k3 k4 k5 k6 k7 k8

0a 10.216 39.768 89.103 158.18 247.00 355.55 483.83 631.84
(10.216) (39.771) (89.104) (158.18) (247.01) (355.57) (483.87) (631.91)

1 21.259 60.828 120.08 199.05 297.74 416.17 554.33 712.21
(21.26) (60.82) (120.08) (199.06) (297.77) (416.20) (554.37) (712.30)

2 34.874 84.580 153.81 242.71 351.31 479.63 627.67 795.43
(34.88) (84.58) (153.81) (242.71) (351.38) (479.65) (627.75) (795.52)

3 51.031 111.02 190.30 289.17 407.70 545.93 703.86 881.51
(51.04) (111.01) (190.30) (289.17) (407.72) (545.97) (703.95) (881.67)
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is R2/R1 = 1.25. In the computation, 30 · 2 terms of the admissible functions were used and both built-in
end conditions are considered. However, the results show that no difference between these two different
built-in end conditions has been found for such a very thin plate. To facilitate comparison, the dimension-
less eigenfrequency parameter k ¼ xR2

1

ffiffiffiffiffiffiffiffiffiffiffi
qh=D

p
is used, where D is the flexural rigidity of the plate. Very

good agreement is observed for all cases. It should be mentioned that the case of a very thin circular plate
(h/R1 = 0.001) is a stringent test case for 3-D vibration analysis. This again shows that the present method
possesses rather good stability in numerical computation.

In order to further demonstrate the reliability and accuracy of the present method, a comparison with
the finite element solutions for axisymmetric vibration of solid circular plates are given in Table 4 for the
fully built-in condition and the built-in condition with a free edge. Three different plate thickness ratios
h/R1 = 0.25, 0.5 and 1.0, and two different built-in radius ratios R2/R1 = 1.05 and 1.25 are considered.
In the finite element computation, shear modulus G = 1.0, mass density per unit volume q = 1.0 and free
surface radius R1 = 1.0 are taken. The QUAD8 axisymmetric element in the commercial program



Table 4
Comparison of the present solutions for axisymmetric vibration with finite element solutions shown in parentheses

R1/R2 h/R1 X1 X2 X3 X4 X5 X6 X7 X8

Fully built-in solid circular plates

1.05 0.25 1.049 3.296 6.002 6.267* 8.871 11.25* 11.79 14.16
(1.060) (3.321) (6.026) (6.286) (8.875) (11.26) (11.75) (14.10)

0.5 1.602 4.185 6.131* 7.008 8.968 9.472* 10.07 10.91*

(1.613) (4.199) (6.143) (7.004) (8.957) (9.449) (10.05) (10.86)
1.0 1.976 4.672 5.067* 6.339* 6.707 6.995* 7.637 8.095*

(1.983) (4.673) (5.061) (6.340) (6.707) (6.992) (7.631) (8.079)
1.25 0.25 1.036 3.273 5.967 5.980* 8.802 10.62* 11.65 14.01

(1.051) (3.305) (5.998) (6.025) (8.812) (10.67) (11.62) (13.97)
0.5 1.558 4.068 5.615* 6.673 8.614 8.812* 9.677 10.34*

(1.575) (4.092) (5.639) (6.685) (8.632) (8.792) (9.673) (10.30)
1.0 1.869 4.224 4.723* 6.045* 6.139 6.506* 7.080 7.766*

(1.883) (4.235) (4.719) (6.038) (6.145) (6.521) (7.089) (7.760)

Built-in solid circular plates with free end

1.05 0.25 1.014 3.243 5.304* 5.926 8.715 9.559* 11.45 13.50*

(1.033) (3.280) (5.407) (5.966) (8.747) (9.640) (11.47) (13.49)
0.5 1.484 3.865 4.203* 6.066 7.898* 8.022 9.394 10.09*

(1.510) (3.912) (4.252) (6.123) (7.892) (8.074) (9.416) (10.06)
1.0 1.624 3.286* 3.319 5.140 5.474* 6.134* 6.559 7.111*

(1.655) (3.292) (3.355) (5.168) (5.481) (6.168) (6.571) (7.134)
1.25 0.25 1.035 3.273 5.903* 5.967 8.802 10.24* 11.65 13.09*

(1.051) (3.305) (5.957) (5.997) (8.812) (10.31) (11.62) (13.09)
0.5 1.550 4.055 4.735* 6.640 7.439* 8.514 9.561 9.766*

(1.568) (4.081) (4.777) (6.655) (7.445) (8.542) (9.564) (9.733)
1.0 1.808 3.192* 3.905 5.269 5.409* 6.166 6.326* 7.414

(1.825) (3.201) (3.925) (5.290) (5.404) (6.166) (6.346) (7.408)

Note: Values with asterisk are the symmetric modes in the thickness direction.
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STRAND7 (G+D Computing Pty Ltd, 1999) is used to obtain the results. The inner sub-plate is divided
into 20 elements in the radial direction while the outer sub-plate is divided into 4 elements in the radial
direction. The size of each element in the thickness direction is fixed at 0.0625R1. It is shown that the pres-
ent solutions are in very good agreement with the finite element solutions for all cases.
4. Parametric studies

This section describes in detail investigations in the effects of various parameters on the vibrational char-
acteristics of built-in solid circular plates. They are the thickness ratio h/R1 the built-in radius ratio R2/R1

and the end condition of the plate at r = R2 Tables 5 and 6 give, respectively, the first eight eigenfrequency
parameters for the antisymmetric and symmetric modes of a fully built-in circular plate with thickness ratio
h/R1 = 0.5. Six different built-in radius ratios, namely R2/R1 = 1.01, 1.05, 1.1, 1.5, 2.0 and 3.0 were consid-
ered. It is shown that the flexibility of the built-in part always results in decreasing eigenfrequencies. In most
cases, the eigenfrequency parameters monotonically decrease with increasing built-in length, especially for
built-in radius ratio R2/R1 6 2. The only exception is the second eigenfrequency parameters of the antisym-
metric mode for torsional vibration for R2/R1 = 3.0 and 5.0. In these two cases, the eigenfrequency param-
eters are only slightly larger than the eigenfrequency parameter for R2/R1 = 2.0. Moreover, with an increase
of the built-in radius ratio, the eigenfrequency parameters approach constant values sooner or later accord-



Table 5
The first eight eigenfrequencies X ¼ xR1

ffiffiffiffiffiffiffiffiffi
q=G

p
for the antisymmetric modes of a fully built-in solid circular plate, h/R1 = 0.5

n R2/R1 X1 X2 X3 X4 X5 X6 X7 X8

0t 1.01 7.341 9.370 11.88 14.62 17.49 19.23 20.09 20.42
1.05 7.292 9.240 11.66 14.31 17.07 19.21 19.87 20.06
1.1 7.265 9.164 11.52 14.08 16.71 19.13 19.35 20.03
1.5 7.250 9.109 11.36 13.35 14.34 16.13 17.63 19.19
2.0 7.250 9.109 11.36 12.89 13.53 14.24 15.40 16.55
3.0 7.250 9.110 11.36 12.66 12.92 13.29 13.70 14.17
5.0 7.250 9.110 11.36 12.59 12.67 12.78 12.94 13.13

0a 1.01 1.642 4.304 7.249 9.092 10.37 12.81 13.45 16.07
1.05 1.602 4.186 7.009 8.958 10.07 12.49 13.16 15.65
1.1 1.579 4.115 6.827 8.818 9.863 12.14 12.99 15.18
1.5 1.555 4.064 6.661 8.574 9.637 11.30 12.41 12.86
2.0 1.555 4.064 6.660 8.573 9.629 11.13 11.55 11.92
3.0 1.555 4.063 6.659 8.572 9.627 11.03 11.13 11.28
5.0 1.555 4.063 6.659 8.572 9.627 10.99 11.00 11.07

1 1.01 2.776 5.671 7.171 8.240 8.759 10.48 10.89 11.88
1.05 2.707 5.497 7.124 8.151 8.483 10.30 10.68 11.57
1.1 2.670 5.376 7.077 8.091 8.284 10.19 10.47 11.37
1.5 2.641 5.282 7.003 7.998 8.138 9.931 10.18 11.08
2.0 2.641 5.282 7.003 7.997 8.137 9.922 10.18 11.02
3.0 2.640 5.281 7.003 7.997 8.137 9.922 10.18 10.99
5.0 2.640 5.280 7.003 7.996 8.136 9.922 10.18 10.98

2 1.01 3.918 6.989 8.219 9.305 10.19 11.63 12.53 13.31
1.05 3.810 6.756 8.137 9.172 9.881 11.42 12.24 12.99
1.1 3.745 6.579 8.066 9.077 9.658 11.28 11.93 12.80
1.5 3.701 6.420 7.945 8.953 9.434 11.08 11.21 12.31
2.0 3.701 6.419 7.945 8.952 9.429 10.99 11.15 11.49
3.0 3.700 6.419 7.945 8.952 9.429 10.95 11.11 11.13
5.0 3.700 6.419 7.945 8.952 9.429 10.94 11.00 11.03
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ing to the order of eigenfrequencies. However the rate of eigenfrequencies of the antisymmetric mode in
approaching constant values, with respect to the built-in length, is much more rapid than that of the
symmetric mode. In general, for R2/R1 > 1.5, the effect of the built-in length on the first three eigenfre-
quency parameters of antisymmetric mode can be neglected.

The first eight eigenfrequency parameters for the antisymmetric and symmetric modes of the same
plate with built-in condition but having a free end are, respectively, given in Tables 7 and 8. It is
shown that for the antisymmetric modes, the first three eigenfrequency parameters for n = 0t (i.e. tor-
sional vibration); the first five for n = 0a (i.e. axisymmetric vibration); the first seven for n = 1 and the
first six for n = 2 monotonically increase with increasing built-in radius ratio. For the symmetric modes,
the first two eigenfrequency parameters for n = 0t; the first for n = 0a; the first two for n = 1 and the first
two for n = 2 also monotonically increase with increasing built-in radius ratio. Similar to the plate with
fully built-in condition, with the increase of the built-in length, the eigenfrequency parameters also ap-
proach constant values sooner or later according to the order of eigenfrequencies. However, the rate of
eigenfrequencies of the antisymmetric mode in approaching constant values, with respect to the built-in
length, is much more rapid than that of the symmetric mode. In general, for R2/R1 > 1.5, the effect of
the built-in length on at least the first three eigenfrequency parameters of antisymmetric mode can be
neglected.



Table 6
The first eight eigenfrequencies X ¼ xR1

ffiffiffiffiffiffiffiffiffi
q=G

p
for the symmetric modes of a fully built-in solid circular plate, h/R1 = 0.5

n R2/R1 X1 X2 X3 X4 X5 X6 X7 X8

0t 1.01 3.795 6.948 10.07 13.13 13.19 14.36 16.11 16.31
1.05 3.677 6.730 9.756 12.76 13.10 14.27 15.74 15.98
1.1 3.578 6.541 9.457 12.32 13.09 14.20 15.14 15.91
1.5 3.431 6.113 8.020 9.634 11.66 13.08 13.52 14.27
2.0 3.429 6.058 7.038 8.281 9.434 10.83 12.27 13.08
3.0 3.428 6.049 6.514 7.036 7.737 8.498 9.248 10.08
5.0 3.428 6.048 6.344 6.497 6.731 7.032 7.390 7.791

0a 1.01 6.290 9.608 11.01 11.41 12.61 13.43 14.46 15.41
1.05 6.132 9.473 10.90 11.32 12.51 13.12 14.21 15.24
1.1 5.965 9.312 10.75 11.26 12.41 12.85 14.07 15.05
1.5 5.341 8.193 9.971 11.15 11.48 12.54 13.27 14.01
2.0 5.221 7.527 9.129 10.22 11.18 11.61 12.54 13.13
3.0 5.206 6.844 7.776 8.889 9.906 10.76 11.20 11.78
5.0 5.206 6.457 6.860 7.398 7.996 8.688 9.436 10.02

1 1.01 3.303 5.317 8.171 8.542 10.42 11.45 11.58 11.87
1.05 3.212 5.151 7.973 8.310 10.27 11.21 11.43 11.67
1.1 3.124 5.012 7.763 8.101 10.08 10.86 11.37 11.50
1.5 2.871 4.772 6.863 7.279 8.728 9.121 10.63 10.74
2.0 2.847 4.763 6.552 6.852 7.565 8.371 8.800 9.667
3.0 2.847 4.763 6.408 6.507 6.863 7.244 7.378 8.009
5.0 2.847 4.762 6.336 6.365 6.480 6.606 6.681 6.939

2 1.01 5.125 6.808 9.338 9.940 11.02 12.18 12.83 13.29
1.05 4.988 6.603 9.157 9.677 10.87 12.09 12.46 12.93
1.1 4.852 6.425 8.936 9.453 10.69 12.02 12.12 12.57
1.5 4.406 6.052 7.810 8.307 9.564 9.910 11.28 11.64
2.0 4.350 5.998 7.248 7.404 8.240 9.153 9.442 10.22
3.0 4.347 5.982 6.661 6.819 7.231 7.697 7.832 8.483
5.0 4.347 5.980 6.396 6.458 6.665 6.741 6.957 7.111
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Comparing the results in Tables 5 and 6 with those in Tables 7 and 8, one can see that the eigenfrequen-
cies of a plate with fully built-in condition are always higher than those with built-in condition but having a
free end. With the increase of the built-in radius ratio, the eigenfrequencies of a plate with fully built-in
condition gradually coincide with those of the plate with built-in condition but having a free end. In general
for R2/R1 P 2, the effect of the end condition on eigenfrequencies can be ignored, especially for the anti-
symmetric mode. This means that for a plate with sufficient built-in length, its end condition is immaterial.
Moreover, the effect of the built-in length on symmetric modes is more significant than that on antisymmet-
ric modes for both built-in end conditions.

The effect of the thickness ratio on the first two eigenfrequency parameters of various mode categories
for the built-in solid circular plates with free end was studied and presented in Figs. 2–7. The plates have a
fixed built-in radius ratio R2/R1 = 1.25. The error function e = (xc�x)/x is defined to evaluate the differ-
ences between the present solutions (eigenfrequency x) considering the flexibility of the built-in part and the
3-D solutions (eigenfrequencies xc) ignoring the flexibility of the built-in part, which is referred to as the
classical clamped boundary condition. In particular, the classical clamped boundary condition is equivalent
to having a clamped end at R1 Six different vibration categories were considered: n = 0t; n = 0a and n = 1–4.
The thickness ratio varies from 0 to 1 with an increment of 0.1. It is seen that in most cases, the errors
monotonically increase with increase in plate thickness, except for the first symmetric mode of axisymmetric



Table 7
The first eight eigenfrequencies X ¼ xR1

ffiffiffiffiffiffiffiffiffi
q=G

p
for the antisymmetric modes of a built-in solid circular plate with free end, h/R1 = 0.5

n R2/R1 X1 X2 X3 X4 X5 X6 X7 X8

0t 1.01 7.023 8.663 10.90 13.46 16.18 18.85 19.23 19.88
1.05 7.181 8.921 11.07 13.41 15.85 18.35 19.22 20.00
1.1 7.228 9.034 11.18 13.30 15.38 17.73 19.21 20.02
1.5 7.250 9.109 11.36 12.71 13.72 15.16 16.81 18.54
2.0 7.250 9.109 11.36 12.60 13.17 13.81 14.75 15.98
3.0 7.250 9.110 11.36 12.57 12.76 13.08 13.48 13.90
5.0 7.250 9.110 11.36 12.57 12.62 12.71 12.85 13.02

0a 1.01 1.388 3.383 5.469 7.809 9.268 11.00 12.34 14.33
1.05 1.485 3.868 6.071 8.026 9.397 10.97 12.33 14.05
1.1 1.521 4.002 6.427 8.219 9.471 10.96 12.18 13.78
1.5 1.555 4.063 6.658 8.570 9.613 10.87 11.47 11.76
2.0 1.555 4.063 6.659 8.572 9.627 10.85 11.00 11.42
3.0 1.555 4.063 6.659 8.572 9.627 10.84 10.97 11.11
5.0 1.555 4.063 6.659 8.572 9.627 10.84 10.97 11.00

1 1.01 2.333 4.217 6.430 7.445 7.719 9.212 9.724 10.80
1.05 2.549 4.893 6.689 7.635 7.973 9.374 9.938 10.89
1.1 2.606 5.155 6.855 7.807 8.065 9.508 10.05 10.89
1.5 2.641 5.279 7.002 7.995 8.135 9.905 10.17 10.90
2.0 2.641 5.280 7.003 7.995 8.136 9.921 10.18 10.82
3.0 2.640 5.280 7.003 7.996 8.136 9.923 10.18 10.84
5.0 2.640 5.280 7.003 7.996 8.136 9.923 10.18 10.86

2 1.01 3.100 5.207 7.404 8.512 8.887 10.38 10.98 12.20
1.05 3.527 5.841 7.602 8.696 9.151 10.57 11.04 12.19
1.1 3.645 6.193 7.738 8.796 9.278 10.68 11.07 12.09
1.5 3.700 6.418 7.944 8.949 9.419 10.78 11.13 11.49
2.0 3.700 6.419 7.945 8.952 9.429 10.81 10.95 11.14
3.0 3.700 6.419 7.945 8.952 9.429 10.83 10.93 11.04
5.0 3.700 6.419 7.945 8.952 9.429 10.94 11.00 11.03
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vibration as shown in Fig. 3. Moreover, the effect of plate thickness on eigenfrequencies of symmetric
modes is in general higher than that on the antisymmetric modes of the same order, especially for the
thicker plates.

As no dimensional simplication has been made in the analysis, the results of the plate problems obtained
by the use of the 3-D theory of elasticity are taken as reference solutions for results obtained by various
approximate plate theories. Table 9 gives a comparison of the present solutions with those (Liew et al.,
1997) from the Mindlin theory, which is commonly used for moderately thick plates. Five different thick-
ness ratios (h/R1 varying from 0.05 to 0.25 with an increment of 0.05) and the first six eigenfrequencies of
axisymmetric vibration have been considered. It is shown from the table that the Mindlin theory can only
predict the antisymmetric modes in the thickness direction, but it cannot predict the symmetric ones. In the
range of plate thickness studied here, the eigenfrequencies from the Mindlin theory are always lower than
those from 3-D elasticity theory for the classical boundary conditions. However, they are larger than those
from 3-D elasticity theory for built-in boundary conditions, either with clamped end or free end. For thin
plates such as h/R1 = 0.05, the differences between the solutions of Mindlin theory and 3-D elasticity are
very small. For thick plates such as h/R1 = 0.25, the errors increase significantly especially when compared
to the 3-D solutions which include the effect of the built-in part.



Table 8
The first eight eigenfrequencies X ¼ xR1

ffiffiffiffiffiffiffiffiffi
q=G

p
for the symmetric modes of a built-in solid circular plate with free end, h/R1 = 0.5

n R2/R1 X1 X2 X3 X4 X5 X6 X7 X8

0t 1.01 2.448 5.478 8.550 11.60 12.98 13.90 14.75 15.52
1.05 2.928 5.600 8.388 11.21 13.06 13.89 14.41 15.73
1.1 3.162 5.680 8.154 10.75 13.08 13.48 14.28 15.82
1.5 3.426 5.954 6.812 8.768 10.55 12.54 13.09 14.14
2.0 3.428 6.032 6.412 7.579 8.817 10.05 11.54 12.93
3.0 3.428 6.048 6.301 6.711 7.342 8.094 8.852 9.631
5.0 3.428 6.048 6.285 6.398 6.593 6.863 7.195 7.577

0a 1.01 3.997 8.067 10.14 10.83 11.62 12.40 12.97 14.53
1.05 4.206 7.898 10.09 11.11 11.77 12.50 13.50 14.37
1.1 4.370 7.738 9.997 11.15 11.70 12.54 13.84 14.14
1.5 5.030 7.077 9.225 10.46 11.21 12.00 12.62 14.01
2.0 5.180 6.595 8.148 9.763 10.82 11.22 12.07 12.62
3.0 5.203 6.314 7.226 8.228 9.435 10.22 11.14 11.35
5.0 5.206 6.241 6.581 7.073 7.650 8.290 9.029 9.733

1 1.01 1.797 3.764 5.975 7.015 9.213 10.04 10.67 11.28
1.05 2.144 4.169 5.954 6.993 9.084 9.785 10.88 11.34
1.1 2.358 4.399 5.937 6.926 8.950 9.437 10.82 11.37
1.5 2.812 4.747 6.133 6.525 7.656 8.222 9.619 9.936
2.0 2.845 4.761 6.201 6.383 7.025 7.347 8.065 8.955
3.0 2.847 4.762 6.221 6.332 6.561 6.709 7.086 7.628
5.0 2.847 4.762 6.227 6.304 6.382 6.412 6.561 6.768

2 1.01 3.122 5.095 7.384 8.507 10.00 11.12 11.69 11.79
1.05 3.410 5.430 7.265 8.387 9.928 11.08 11.62 12.00
1.1 3.619 5.614 7.160 8.197 9.823 10.67 11.51 12.04
1.5 4.259 5.896 6.916 7.001 8.574 9.244 10.27 10.73
2.0 4.341 5.945 6.477 6.717 7.630 8.177 8.767 9.692
3.0 4.347 5.977 6.267 6.474 6.933 7.121 7.476 8.090
5.0 4.347 5.980 6.228 6.347 6.494 6.545 6.783 6.905
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Fig. 2. The eigenfrequency errors of torsional vibration for solid circular plates, considering the flexibility of the built-in annulus via
the classical boundary condition, R2/R1 = 1.25: (}) the first antisymmetric mode; (h) the second antisymmetric mode; (n) the first
symmetric mode; (s) the second symmetric mode.
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Fig. 3. The eigenfrequency errors of axisymmetric vibration for solid circular plates, considering the flexibility of the built-in annulus
via the classical boundary condition, R2/R1 = 1.25: (}) the first antisymmetric mode; (h) the second antisymmetric mode; (n) the first
symmetric mode; (s) the second symmetric mode.
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Fig. 4. The eigenfrequency errors of circumferential wave number n = 1 for solid circular plates, considering the flexibility of the built-
in annulus via the classical boundary condition, R2/R1 = 1.25: (}) the first antisymmetric mode; (h) the second antisymmetric mode;
(n) the first symmetric mode; (s) the second symmetric mode.
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Fig. 5. The eigenfrequency errors of circumferential wave number n = 2 for solid circular plates, considering the flexibility of the built-
in annulus via the classical boundary condition, R2/R1 = 1.25: (}) the first antisymmetric mode; (h) the second antisymmetric mode;
(n) the first symmetric mode; (s) the second symmetric mode.
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Fig. 6. The eigenfrequency errors of circumferential wave number n = 3 for solid circular plates, considering the flexibility of the built-
in annulus via the classical boundary condition, R2/R1 = 1.25: (}) the first antisymmetric mode; (h) the second antisymmetric mode;
(n) the first symmetric mode; (s) the second symmetric mode.
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Fig. 7. The eigenfrequency errors of circumferential wave number n = 4 for solid circular plates, considering the flexibility of the built-
in annulus via the classical boundary condition, R2/R1 = 1.25: (}) the first antisymmetric mode; (h) the second antisymmetric mode;
(n) the first symmetric mode; (s) the second symmetric mode.
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5. Conclusions

The 3-D free vibration of circular plates, which are built into a rigid medium, is studied. The analysis is
based on the theory of small-strain elasticity for isotropic materials. The eigenvalue equations are derived
by the Ritz method. Using the Chebyshev polynomial series as the admissible functions, high accuracy and
stable computations have been achieved as observed from the convergence and comparison studies. The
effect of plate thickness, built-in length and the end condition on eigenfrequencies is investigated in detail.
The following conclusions can be drawn:

1. The effect of the built-in part on eigenfrequencies significantly increases with increasing plate thickness.
The effect of flexibility of the built-in part on the symmetric modes is higher than that on antisymmetric
modes. For thin plates, the effect of the built-in part on eigenfrequencies is very small and can be
ignored. However, for thick plates, the effect of the built-in part on eigenfrequencies is considerable
and should be considered in the analysis.



Table 9
A comparison study of the present solutions with those from Mindlin theory for the axisymmetric vibration of solid built-in circular
plates with R2/R1 = 1.1

h/R1 Solution k1 k2 k3 k4 k5 k6

0.05 3-Dbc 10.026 38.476 84.355 145.64 220.12 261.57
3-Dbf 10.026 38.476 84.355 145.64 220.12 261.56
3-Dc 10.159 38.938 85.263 147.05 222.02 265.72s

Mindlin 10.145 38.855 84.995 146.40 220.73 –

0.1 3-Dbc 9.7320 35.968 75.090 123.02 128.94 176.66
3-Dbf 9.7319 35.967 75.088 123.02 128.47 176.66
3-Dc 9.9728 36.682 76.305 124.73 132.91s 178.94
Mindlin 9.9408 36.479 75.664 123.32 – 176.41

0.15 3-Dbc 9.3662 32.911 65.172 85.050 101.97 141.04
3-Dbf 9.3604 32.894 65.144 83.468 101.94 141.00
3-Dc 9.6802 33.712 66.461 88.590s 103.90 143.91
Mindlin 9.6286 33.393 65.551 – 102.09 140.93

0.2 3-Dbc 8.9535 29.802 56.365 63.284 85.242 114.98
3-Dbf 8.9247 29.737 56.279 60.353 85.140 114.85
3-Dc 9.3111 30.616 57.736 66.392s 87.526 118.59
Mindlin 9.2400 30.211 56.682 – 85.571 115.55

0.25 3-Dbc 8.5220 26.899 49.001 50.318 72.287 80.272
3-Dbf 8.4537 26.778 48.856 46.123 72.075 90.204
3-Dc 8.8957 27.715 50.534 53.040s 75.017 95.001s

Mindlin 8.8068 27.253 49.420 – 73.054 –

Note: 3-Dc means 3-D solutions of circular plates with classical clamped boundary. 3-Dbc means 3-D solutions of fully built-in circular
plates and 3-Dbf means 3-D solutions of built-in circular plates with free end. The superscript s means symmetric modes in the thickness
direction. The solutions of Mindlin theory are taken from a paper published by Liew et al. (1997).
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2. For a circular plate with fully built-in edges, the flexibility of the built-in part always results in a decrease
of eigenfrequencies. The eigenfrequencies of plates with fully built-in conditions are always higher than
those of built-in plates with free end. For a plate with bigger built-in length or smaller thickness, the
effect of the end condition on eigenfrequencies can be neglected, whether for plates with fully built-in
condition or for plates with built-in condition but having a free end.

3. With the increase of the built-in length, the eigenfrequencies approach constant values sooner or later
according to the order of eigenfrequencies. However, the rate of eigenfrequencies of the antisymmetric
modes in approaching constant values, with respect to the built-in length, is much more rapid than that
of the symmetric modes.
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